
Example session of model selection tools and

diagnostics for models �t with the unmarked package

Marc J. Mazerolle
*

20 March 2023

Abstract

The AICcmodavg package implements model selection and multimodel inference for

a wide range of model types, including those �t with the unmarked package (Fiske and

Chandler, 2011). For the latter model type, the AICcmodavg package o�ers additional

diagnostic tools and utility functions. Using an example of single-season single-species

site analysis, this vignette illustrates these tools.

1 Introduction

Estimating demographic parameters can be challenging in animal populations a�icted

by varying probabilities of detection (Williams et al., 2002; Mazerolle et al., 2007). A va-

riety of approaches have been developed to overcome this issue, by estimating detection

probabilities explicitly along with the biological parameters of interest (Buckland et al.,

2001; Williams et al., 2002; MacKenzie et al., 2006; Royle and Dorazio, 2008). These

methods include capture-mark-recapture models, distance sampling, site occupancy

models, and N -mixture models (Williams et al., 2002; MacKenzie et al., 2006). Some

of these methods are gaining popularity and have been implemented in the unmarked

package (Fiske and Chandler, 2011). Two recent books by Kéry and Royle (2016) and

Kéry and Royle (2021) are excellent introductions to the application of these methods

using unmarked. Below, I outline an example using various tools from the AICcmodavg

package.

2 Example using a site occupancy analysis

The basic design for site occupancy analysis consists of repeated visits conducted at

a series of sites to detect a species of interest MacKenzie et al. (2006). An important

assumption of these analyses is that the state of the site (occupied or not occupied) does

not change between the �rst and last visit. The �rst example is drawn from a study

of the invasive common reed (Phragmites australis, haplotype M) on the occupancy

of Bullfrogs (Lithobates catesbeianus) in 50 wetlands in the Montréal area, Québec,

*Département des sciences du bois et de la forêt, Université Laval, Québec, Canada

1

Canada (Mazerolle, 2015). Three-minute call surveys were conducted at stations on

the perimeter of the wetlands on three occasions during the 2009 Bullfrog breeding

season. The number of sampling stations depended on wetland size, ranging between 4

and 11 stations (average number of sampling stations on a given visit = 8.67). Minnow

traps were also used to sample adults, with a trap deployed at each sampling station

during two periods of two consecutive nights. Traps were checked daily to identify

and release individuals. Sites were surveyed for invasive common reed. These data are

included in the AICcmodavg package in the bullfrog data frame. The help page of the

data frame describes each column (see ?bullfrog).

2.1 Preparing the data and a few diagnostics

> ##load package

> library(AICcmodavg)

> ##load data frame

> data(bullfrog)

We can start by checking the structure of the data frame:

> ##check data structure

> str(bullfrog)

'data.frame': 50 obs. of 23 variables:

$ Location : Factor w/ 50 levels "Arbo_Mc_gill",..: 1 2 3 4 5 6 7 8 9 10 ...

$ Reed.presence: int 0 1 1 1 0 1 1 1 1 1 ...

$ V1 : int 0 0 0 0 0 0 0 0 0 0 ...

$ V2 : int 0 0 0 NA 0 0 0 0 0 NA ...

$ V3 : int 0 0 0 NA 0 0 0 0 0 NA ...

$ V4 : int 0 0 0 0 0 1 1 1 0 1 ...

$ V5 : int 0 0 0 NA 0 0 0 0 0 0 ...

$ V6 : int 0 0 0 NA 0 0 0 0 0 0 ...

$ V7 : int 0 0 0 0 0 0 0 0 0 0 ...

$ Effort1 : num 1.334 -0.666 -0.666 -4.666 2.334 ...

$ Effort2 : num 1.334 -0.666 -0.666 -8.666 2.334 ...

$ Effort3 : num 1.334 -0.666 -0.666 -8.666 2.334 ...

$ Effort4 : num 1.334 -0.666 -0.666 -4.666 2.334 ...

$ Effort5 : num 0.334 -0.666 -0.666 -8.666 2.334 ...

$ Effort6 : num 0.334 -0.666 -0.666 -8.666 2.334 ...

$ Effort7 : num 1.334 -0.666 -0.666 -4.666 2.334 ...

$ Type1 : int 0 0 0 0 0 0 0 0 0 0 ...

$ Type2 : int 1 1 1 1 1 1 1 1 1 1 ...

$ Type3 : int 1 1 1 1 1 1 1 1 1 1 ...

$ Type4 : int 0 0 0 0 0 0 0 0 0 0 ...

$ Type5 : int 1 1 1 1 1 1 1 1 1 1 ...

$ Type6 : int 1 1 1 1 1 1 1 1 1 1 ...

$ Type7 : int 0 0 0 0 0 0 0 0 0 0 ...

> ##first rows

> head(bullfrog)

Location Reed.presence V1 V2 V3 V4 V5 V6 V7

1 Arbo_Mc_gill 0 0 0 0 0 0 0 0

2 Beauharnois_bassin 1 0 0 0 0 0 0 0

3 Beauharnois_chemin 1 0 0 0 0 0 0 0

2

4 Bois_de_liesse_elec 1 0 NA NA 0 NA NA 0

5 Bois_de_liesse_grand 0 0 0 0 0 0 0 0

6 IBoucherville_chenal_a_pinard 1 0 0 0 1 0 0 0

Effort1 Effort2 Effort3 Effort4 Effort5 Effort6

1 1.3342857 1.3342857 1.3342857 1.3342857 0.3342857 0.3342857

2 -0.6657143 -0.6657143 -0.6657143 -0.6657143 -0.6657143 -0.6657143

3 -0.6657143 -0.6657143 -0.6657143 -0.6657143 -0.6657143 -0.6657143

4 -4.6657143 -8.6657143 -8.6657143 -4.6657143 -8.6657143 -8.6657143

5 2.3342857 2.3342857 2.3342857 2.3342857 2.3342857 2.3342857

6 0.3342857 0.3342857 0.3342857 0.3342857 0.3342857 0.3342857

Effort7 Type1 Type2 Type3 Type4 Type5 Type6 Type7

1 1.3342857 0 1 1 0 1 1 0

2 -0.6657143 0 1 1 0 1 1 0

3 -0.6657143 0 1 1 0 1 1 0

4 -4.6657143 0 1 1 0 1 1 0

5 2.3342857 0 1 1 0 1 1 0

6 0.3342857 0 1 1 0 1 1 0

We will then extract the data to later format into an unmarkedFrameOccu object,

including the detections, the site variables, and the observation variables:

> ##extract detections

> yObs <- bullfrog[, c("V1", "V2", "V3", "V4", "V5", "V6", "V7")]

> ##extract site variables

> siteVars <- bullfrog[, c("Location", "Reed.presence")]

> ##extract observation variables

> ##centered sampling effort on each visit

> effort <- bullfrog[, c("Effort1", "Effort2", "Effort3", "Effort4",

"Effort5", "Effort6", "Effort7")]

> ##survey type (0 = call survey, 1 = minnow trap)

> type <- bullfrog[, c("Type1", "Type2", "Type3", "Type4", "Type5",

"Type6", "Type7")]

Now that the variables have been extracted, we can assemble the unmarkedFrameOccu

object. This step is important for the unmarked functions to properly retrieve the re-

quired information to run the models:

> ##load package

> library(unmarked)

> ##format data

> bfrogData <- unmarkedFrameOccu(y = yObs,

siteCovs = siteVars,

obsCovs = list(Type = type, Effort = effort))

We can inspect the newly-created object:

> summary(bfrogData)

unmarkedFrame Object

50 sites

Maximum number of observations per site: 7

Mean number of observations per site: 6.84

Sites with at least one detection: 23

3

Tabulation of y observations:

0 1 <NA>

308 34 8

Site-level covariates:

Location Reed.presence

Arbo_Mc_gill : 1 Min. :0.0

Beauharnois_bassin : 1 1st Qu.:0.0

Beauharnois_chemin : 1 Median :0.5

Bois_de_liesse_elec : 1 Mean :0.5

Bois_de_liesse_grand : 1 3rd Qu.:1.0

IBoucherville_chenal_a_pinard: 1 Max. :1.0

(Other) :44

Observation-level covariates:

Type Effort

Min. :0.0000 Min. :-8.6657

1st Qu.:0.0000 1st Qu.:-0.6657

Median :1.0000 Median : 0.3343

Mean :0.5714 Mean : 0.0000

3rd Qu.:1.0000 3rd Qu.: 1.3343

Max. :1.0000 Max. : 2.3343

The detHist() function in AICcmodavg displays the frequencies for each observed

detection history, and this function also works with model objects:

> detHist(bfrogData)

Summary of detection histories:

0000000 0000001 0000100 0000110 0001000 0001111 0100000

Frequency 25 2 2 1 6 1 2

0..0..0 0..1000 1000000 1000100 1001001 1010000 1011001

Frequency 1 1 3 1 1 1 1

.000000 .000001

Frequency 1 1

Proportion of sites with at least one detection:

0.46

Frequencies of sites with detections:

sampled detected

Season-1 50 23

Also see functions detTime(), countDist(), and countHist() to summarize time-

to-detection data, distance sampling data, or count data.

2.2 Formulating and �tting the candidate models

Next, we can formulate the candidate models. In this example, I am considering four

candidate models involving the probabilities of occupancy (ψ) and detection (p):

1. a null model with constant occupancy and detection probability, ψ(.)p(.);

2. a model with constant occupancy but detection probability varying with survey

e�ort (number of stations) and survey type, ψ(.)p(E�ort+ Type);

4

3. a model with occupancy varying with reed presence and constant detection prob-

ability, ψ(Reed)p(.);

4. the full model, ψ(Reed)p(E�ort+ Type).

We can �t the single-season site occupancy models using the occu() function of

unmarked. Note that it is recommended to center or standardize numeric explanatory

variables recorded on an interval or ratio scale to facilitate convergence of the optimiza-

tion routine. Here, sampling e�ort was centered by subtracting the mean number of

stations (x̄ = 8.66) from each value before importing the data set.

> ##null model

> m1 <- occu(~ 1 ~ 1, data = bfrogData)

> ##p varies with survey type and effort, occupancy is constant

> m2 <- occu(~ Type + Effort ~ 1, data = bfrogData)

> ##p constant, occupancy varies with reed presence

> m3 <- occu(~ 1 ~ Reed.presence, data = bfrogData)

> ##global model

> m4 <- occu(~ Type + Effort ~ Reed.presence, data = bfrogData)

2.3 Inspecting the output and checking model �t

To inspect the output, we can use summary() from unmarked or summaryOD() from

the AICcmodavg package. With the latter, we can request the output in the form of

con�dence intervals around the estimates or traditional null-hypothesis testing, and we

can also correct inferences for overdispersion:

> summary(m4)

Call:

occu(formula = ~Type + Effort ~ Reed.presence, data = bfrogData)

Occupancy (logit-scale):

Estimate SE z P(>|z|)

(Intercept) 2.04 1.78 1.14 0.253

Reed.presence -2.04 1.72 -1.19 0.235

Detection (logit-scale):

Estimate SE z P(>|z|)

(Intercept) -1.380 0.340 -4.06 4.84e-05

Type -1.076 0.400 -2.69 7.11e-03

Effort 0.254 0.177 1.44 1.51e-01

AIC: 213.8576

Number of sites: 50

optim convergence code: 0

optim iterations: 21

Bootstrap iterations: 0

> summaryOD(m4, out.type = "confint")

Precision unadjusted for overdispersion:

Estimate Std. Error Lower 95% CL Upper 95% CL

psi(Int) 2.0365 1.7825 -0.8955 4.969

psi(Reed.presence) -2.0417 1.7191 -4.8694 0.786

5

p(Int) -1.3804 0.3398 -1.9393 -0.822

p(Type) -1.0762 0.3998 -1.7339 -0.419

p(Effort) 0.2542 0.1769 -0.0367 0.545

(c-hat = 1)

> summaryOD(m4, out.type = "nhst")

Precision and hypothesis tests unadjusted for overdispersion:

Estimate Std. Error z value Pr(>|z|)

psi(Int) 2.0365 1.7825 1.142 0.25325

psi(Reed.presence) -2.0417 1.7191 -1.188 0.23499

p(Int) -1.3804 0.3398 -4.063 4.84e-05

p(Type) -1.0762 0.3998 -2.692 0.00711

p(Effort) 0.2542 0.1769 1.437 0.15062

(c-hat = 1)

We can use the above functions to inspect the output of each model, keeping an eye

out for issues in model �tting, such as error or warning messages about non convergence,

problems with the Hessian matrix, or abnormally large standard errors relative to the

estimates. Certain diagnostic tools of the AICcmodavg package can be applied to a

list of models. Let's create a list of models to store the output. This list will also be

necessary for model selection and multimodel inference.

> bfrogMods <- list("null" = m1, "psidot.pTypeEffort" = m2,

"psiReed.pdot" = m3,

"psiReed.pTypeEffort" = m4)

We can check for the convergence of the algorithm to �nd the maximum likelihood

estimates, with the checkConv function. This can be done for a single model or a list

of models:

> ##check convergence for a single model

> checkConv(m1)

Converged: TRUE

> ##extract values across all models

> sapply(bfrogMods, checkConv)

null psidot.pTypeEffort psiReed.pdot psiReed.pTypeEffort

converged TRUE TRUE TRUE TRUE

message NULL NULL NULL NULL

The output suggests that the algorithm converged for all four models. Next, we

can compute the condition number, which is the ratio of the largest eigenvalue of the

Hessian matrix to the smallest value of the same matrix. Typically, large values of the

condition number (e.g., 1 000 000) can indicate that a model may be overparameterized.

We can get the condition using the extractCN() function:

> ##extract condition number of single model

> extractCN(m1)

Condition number log10

17.56 1.24

6

> ##extract condition across all models

> sapply(bfrogMods, extractCN)

null psidot.pTypeEffort psiReed.pdot psiReed.pTypeEffort

CN 17.55675 21.37429 520.0896 276.1269

log10 1.244444 1.329892 2.716078 2.441109

method "svd" "svd" "svd" "svd"

None of the models have excessively high condition numbers. Another diagnostic

tool that may be useful is the highest standard errors of the estimates in each model or

the number of standard errors larger than a given threshold (e.g., 25), obtained with

the checkParms() function:

> ##check highest SE in single model

> checkParms(m1)

variable max.se n.high.se

psi psi(Int) 0.8 0

> ##check highest SE across all models

> lapply(bfrogMods, checkParms)

$null

variable max.se n.high.se

psi psi(Int) 0.8 0

$psidot.pTypeEffort

variable max.se n.high.se

psi psi(Int) 0.68 0

$psiReed.pdot

variable max.se n.high.se

psi psi(Int) 3.23 0

$psiReed.pTypeEffort

variable max.se n.high.se

psi psi(Int) 1.78 0

We note that the standard errors of the estimates are not exceptionally high, sug-

gesting that there are no issues with the standard errors. We can the proceed to check

the goodness of �t of the global model (Burnham and Anderson, 2002). A �rst assess-

ment could be based on a comparison between the global model and the null model,

using a likelihood-ratio test implemented with anovaOD(). This function also adjusts

inferences in case of overdispersion when the c.hat argument is speci�ed:

> ##compare global model vs null

> anovaOD(mod.simple = m1, mod.complex = m3)

Analysis of deviance table

Simple model (1): psi(.)p(.)

Complex model (2): psi(Reed.presence)p(.)

K logLik Kdiff -2logLik Chisq Pr(>Chisq)

1 2 -109.8

2 3 -108.0 1 3.674 3.674 0.0553

7

This comparison suggests that the global model is marginally better than the null

model. A more formal assessment is based on the MacKenzie and Bailey goodness of �t

test, which essentially compares the observed frequencies of the detection histories to

the expected frequencies based on a χ2 statistic, where the signi�cance of the statistic

is assessed with a parametric bootstrap (MacKenzie and Bailey, 2004). This test is

implemented in the mb.gof.test() function. A total of 1000 to 10000 iterations

are recommended (MacKenzie and Bailey, 2004). The function includes arguments to

specify the number of cores on the computer (ncores) and whether parallel processing

should be used to speed up computations (parallel). Because the time to complete

the goodness-of-�t test depends on your hardware, saving the output in a �le using

save() is more e�cient than running the function each time.

> ##this takes 226 min. using 2 cores

> gof <- mb.gof.test(mod = m4, nsim = 10000, parallel = TRUE, ncores = 2)

> gof

> save(gof, file = "gofMod3.Rdata")

MacKenzie and Bailey goodness-of-fit for single-season occupancy model

Pearson chi-square table:

Cohort Observed Expected Chi-square

0000000 0 25 24.38 0.02

0000001 0 2 3.05 0.36

0000100 0 2 0.92 1.28

0000110 0 1 0.09 9.27

0001000 0 6 3.05 2.84

0001111 0 1 0.01 94.12

0100000 0 2 0.89 1.39

1000000 0 3 3.05 0.00

1000100 0 1 0.28 1.86

1001001 0 1 0.30 1.64

1010000 0 1 0.27 1.98

1011001 0 1 0.03 30.86

0..1000 1 1 0.06 14.03

0..0..0 2 1 0.90 0.01

.000000 3 1 1.40 0.11

.000001 3 1 0.12 6.30

Chi-square statistic = 177.2475

Number of bootstrap samples = 10000

P-value = 0.2039

Quantiles of bootstrapped statistics:

0% 25% 50% 75% 100%

13 68 102 159 16130

Estimate of c-hat = 1.08

The goodness-of-�t test suggests that the model �ts the data with low overdispersion

(P = 0.2039, ĉ = 1.08, Fig. 1). Values of ĉ > 3 can indicate lack-of-�t in addition to

overdispersion (Lebreton et al., 1992). Given that the ĉ is very close to 1, adjusting for
this overdispersion will make inferences slightly more conservative:

8

Bootstrapped MacKenzie and Bailey fit statistic (10 000 samples)

Simulated statistic (observed = 177.25)

F
re

qu
en

cy

0 5000 10000 15000

0
20

00
40

00
60

00
80

00
10

00
0 P = 0.2039

Figure 1: Distribution of chi-square values obtained from parametric bootstrapping from the
global site occupancy model.

> ##compare inferences

> summaryOD(m3)

Precision unadjusted for overdispersion:

Estimate Std. Error Lower 95% CL Upper 95% CL

psi(Int) 2.5781 3.2269 -2.7297 7.886

psi(Reed.presence) -2.5408 3.0655 -7.5831 2.501

p(Int) -1.8344 0.2998 -2.3275 -1.341

(c-hat = 1)

> summaryOD(m3, c.hat = 1.08)

Precision adjusted for overdispersion:

Estimate Std. Error Lower 95% CL Upper 95% CL

psi(Int) 2.5781 3.3535 -2.9379 8.094

psi(Reed.presence) -2.5408 3.1858 -7.7809 2.699

p(Int) -1.8344 0.3115 -2.3468 -1.322

9

(c-hat = 1.08)

However, di�erences in the inferences will increase with ĉ, because the standard

errors of the estimates are multiplied by ĉ.

2.4 Conducting model selection and multimodel inference

Now that we con�rmed that the global model �ts the data, we can proceed with model

selection using aictab(). The default option uses the second-order Akaike information

criterion (AICc, Sugiura 1978; Hurvich and Tsai 1989). Other information criteria can

be chosen such as AIC (Akaike, 1973) by using second.ord = FALSE, or their quasi-

likelihood versions in the presence of overdispersion, QAIC or QAICc by modifying

c.hat (Lebreton et al., 1992; Burnham and Anderson, 2002). Model selection with

the Bayesian information criterion (BIC, Schwarz 1978) is implemented in function

bictab(). Below, we use the AICc and compare it against the QAICc:

> ##when no overdispersion is present

> outTab <- aictab(cand.set = bfrogMods)

> ##accounting for overdispersion

> outTabC <- aictab(cand.set = bfrogMods, c.hat = 1.08)

> outTab

Model selection based on AICc:

K AICc Delta_AICc AICcWt Cum.Wt LL

psiReed.pTypeEffort 5 215.22 0.00 0.61 0.61 -101.93

psidot.pTypeEffort 4 216.21 0.99 0.37 0.98 -103.66

psiReed.pdot 3 222.48 7.25 0.02 0.99 -107.98

null 2 223.88 8.66 0.01 1.00 -109.81

> outTabC

Model selection based on QAICc:

(c-hat estimate = 1.08)

K QAICc Delta_QAICc QAICcWt Cum.Wt Quasi.LL

psiReed.pTypeEffort 6 202.71 0.00 0.55 0.55 -94.38

psidot.pTypeEffort 5 203.33 0.62 0.41 0.96 -95.98

psiReed.pdot 4 208.85 6.14 0.03 0.98 -99.98

null 3 209.88 7.17 0.02 1.00 -101.68

Two models emerged as being equivalent (∆QAICc = 0.62), with a combined Akaike
weight of 0.96. Both models consisted of survey type and e�ort on detection probability,

but varied in terms of reed presence on occupancy. We can use the evidence ratio of

Akaike weights to compare the two models:

> ##evidence ratio between top-ranked model vs second-ranked model

> evidence(aic.table = outTabC)

Evidence ratio between models 'psiReed.pTypeEffort' and 'psidot.pTypeEffort':

1.36

Given that the two models are equivalent and di�er only in the reed presence on oc-

cupancy, there is little evidence for a variation of bullfrog occupancy with the presence

10

of common reed. We can formally assess the e�ect of reed presence across the entire

model set using the model-averaging shrinkage estimator (modavgShrink(), Burn-

ham and Anderson 2002), based on the model-averaged estimate (ˆ̄β) and an uncondi-

tional 95% con�dence interval (95% CI). Note that we use the parm.type argument

in modavgShrink() to specify the parameter on which reed presence appears, here

parm.type = "psi" because reed presence is a variable on the occupancy component

of the models:

> ##model-averaged estimate of reed presence - shrinkage estimator

> estReed <- modavgShrink(cand.set = bfrogMods,

parm = "Reed.presence", parm.type = "psi",

c.hat = 1.08)

> estReed

Multimodel inference on "psi(Reed.presence)" based on QAICc

QAICc table used to obtain model-averaged estimate with shrinkage:

(c-hat estimate = 1.08)

K QAICc Delta_QAICc QAICcWt Estimate SE

null 3 209.88 7.17 0.02 0.00 0.00

psidot.pTypeEffort 5 203.33 0.62 0.41 0.00 0.00

psiReed.pdot 4 208.85 6.14 0.03 -2.54 3.19

psiReed.pTypeEffort 6 202.71 0.00 0.55 -2.04 1.79

Model-averaged estimate with shrinkage: -1.19

Unconditional SE: 1.75

95% Unconditional confidence interval: -4.63, 2.24

Although the top-ranked model included the presence of reed on occupancy, the

estimate of reed presence on the occupancy of bullfrogs did not di�er from 0 (ˆ̄βReed
= -1.19, 95% CI : [-4.63, 2.24]). Similarly, we can estimate the e�ect of survey type

and sampling e�ort on detection probability, now specifying parm.type = "detect"

because these two variables appear on the detection probability part of the models:

> estType <- modavgShrink(cand.set = bfrogMods,

parm = "Type", parm.type = "detect",

c.hat = 1.08)

> estType

Multimodel inference on "p(Type)" based on QAICc

QAICc table used to obtain model-averaged estimate with shrinkage:

(c-hat estimate = 1.08)

K QAICc Delta_QAICc QAICcWt Estimate SE

null 3 209.88 7.17 0.02 0.00 0.00

psidot.pTypeEffort 5 203.33 0.62 0.41 -1.07 0.42

psiReed.pdot 4 208.85 6.14 0.03 0.00 0.00

psiReed.pTypeEffort 6 202.71 0.00 0.55 -1.08 0.42

Model-averaged estimate with shrinkage: -1.03

Unconditional SE: 0.46

95% Unconditional confidence interval: -1.93, -0.13

11

> estEffort <- modavgShrink(cand.set = bfrogMods,

parm = "Effort", parm.type = "detect",

c.hat = 1.08)

> estEffort

Multimodel inference on "p(Effort)" based on QAICc

QAICc table used to obtain model-averaged estimate with shrinkage:

(c-hat estimate = 1.08)

K QAICc Delta_QAICc QAICcWt Estimate SE

null 3 209.88 7.17 0.02 0.00 0.00

psidot.pTypeEffort 5 203.33 0.62 0.41 0.28 0.19

psiReed.pdot 4 208.85 6.14 0.03 0.00 0.00

psiReed.pTypeEffort 6 202.71 0.00 0.55 0.25 0.18

Model-averaged estimate with shrinkage: 0.26

Unconditional SE: 0.19

95% Unconditional confidence interval: -0.12, 0.63

Detection probability during call surveys was higher than using minnow trapping

sessions (ˆ̄βType = −1.03, 95% CI : [−1.93,−0.13]). However, detection probability did

not vary with the number of sampling stations (ˆ̄βE�ort = 0.26, 95% CI : [−0.12, 0.63]).

2.5 Plotting results

The next step is to create plots to illustrate the results. Because no single model en-

compassed all the support, we can make predictions based on the entire set of models.

This is implemented in modavgPred(). The approach is similar to predict() which

uses a newdata argument to specify a new data set to make predictions. To obtain

model-averaged predictions with modavgPred(), you must supply a data frame with

the newdata argument. This data frame must include values for every variable appear-

ing in the component of the candidate models for which predictions are desired (e.g.,

occupancy or detection probability). A further requirement is that each variable must

be of the same class, and factors must use the same reference level than in the origi-

nal analysis. To facilitate the identi�cation of each variable to include in predictions,

the extractX() function summarizes the variables appearing at least once in a given

component of the model, as well as their class:

> ##variables on psi

> extractX(cand.set = bfrogMods, parm.type = "psi")

Predictors appearing in candidate models:

Reed.presence

Structure of predictors in siteCovs:

$ Reed.presence: int 0 1 1 1 0 1 1 1 1 1 ...

> ##variables on p

> extractX(cand.set = bfrogMods, parm.type = "detect")

Predictors appearing in candidate models:

Type Effort

Structure of predictors in obsCovs:

12

$ Type : int 0 1 1 0 1 1 0 0 1 1 ...

$ Effort: num 1.334 1.334 1.334 1.334 0.334 ...

We see that reed presence is the only variable appearing in models on occupancy,

whereas the survey type and sampling e�ort appear in models on detection probability.

To make predictions of occupancy according to reed presence, we could create the

following data frame:

> reedFrame <- data.frame(Reed.presence = c(0, 1))

We would then compute the model-averaged predictions of occupancy in the pres-

ence or absence of reed:

> outReed <- modavgPred(cand.set = bfrogMods, newdata = reedFrame,

parm.type = "psi", c.hat = 1.08)

> outReed

Model-averaged predictions on the response scale

based on entire model set and 95% confidence interval:

mod.avg.pred uncond.se lower.CL upper.CL

1 0.810 0.196 0.156 0.992

2 0.586 0.189 0.227 0.876

Before building the plot, it can be useful to store the predictions in the data frame

and take advantage of the data argument in plot():

> ##store predictions and confidence intervals in data frame

> reedFrame$fit <- outReed$mod.avg.pred

> reedFrame$low95 <- outReed$lower.CL

> reedFrame$upp95 <- outReed$upper.CL

We can now create the plot:

> ##create plot

> xvals <- c(0.2, 0.4)

> plot(fit ~ xvals, data = reedFrame,

ylab = "Probability of occupancy",

xlab = "Presence of reed",

ylim = c(0, 1),

cex = 1.2, cex.axis = 1.2, cex.lab = 1.2,

xlim = c(0, 0.6),

xaxt = "n")

> #add x axis

> axis(side = 1, at = xvals,

labels = c("absent", "present"),

cex.axis = 1.2)

> ##add error bars

> segments(x0 = xvals, y0 = reedFrame$low95,

x1 = xvals, y1 = reedFrame$upp95)

Unsurprisingly, Figure 2 shows that there is no di�erence in occupancy in the pres-

ence or absence of common reed in the wetland, consistent with the results of the

model-averaged β estimate of reed presence shown earlier.

We can use a similar strategy to compute predictions for detection probability for

the two survey types. Recall that survey type was coded as 0 (call survey) or 1 (minnow

13

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Presence of reed

P
ro

ba
bi

lit
y

of
 o

cc
up

an
cy

absent present

Figure 2: Occupancy probability of bullfrogs (Lithobates catesbeianus) in wetlands with and
without invasive common reed.

trapping). Two variables appeared on detection probability. To plot detection proba-

bility across survey types, we need to hold the other variable constant. We can hold

numeric variables constant at their mean (0 if variable was centered or standardized),

whereas for binary variables or factors, we must choose a level for predictions.

> ##vary Type, hold Effort constant at its mean

> typeFrame <- data.frame(Type = c(0, 1), Effort = 0)

> ##model-averaged predictions

> outType <- modavgPred(cand.set = bfrogMods, newdata = typeFrame,

parm.type = "detect", c.hat = 1.08)

> outType

Model-averaged predictions on the response scale

based on entire model set and 95% confidence interval:

mod.avg.pred uncond.se lower.CL upper.CL

1 0.196 0.057 0.107 0.332

2 0.081 0.031 0.038 0.162

14

We now plot predictions across survey type:

> ##store predictions and confidence intervals in data frame

> typeFrame$fit <- outType$mod.avg.pred

> typeFrame$low95 <- outType$lower.CL

> typeFrame$upp95 <- outType$upper.CL

> ##create plot

> xvals <- c(0.2, 0.4)

> plot(fit ~ xvals, data = typeFrame,

ylab = "Detection probability",

xlab = "Survey type",

ylim = c(0, 1),

cex = 1.2, cex.axis = 1.2, cex.lab = 1.2,

xlim = c(0, 0.6),

xaxt = "n")

> #add x axis

> axis(side = 1, at = xvals,

labels = c("call survey", "minnow trapping"),

cex.axis = 1.2)

> ##add error bars

> segments(x0 = xvals, y0 = typeFrame$low95,

x1 = xvals, y1 = typeFrame$upp95)

Figure 3 shows that detection probability is higher during call surveys than during

minnow trapping periods. We can create the plot for the second explanatory variable

(sampling e�ort) appearing on detection probability.

We note that sampling e�ort is a numeric variable relating to the number of stations

sampled on each visit. To make predictions across sampling e�ort, we can provide a

series of values within the range of values observed in the original data set. Thirty or

forty values usually su�ce to plot the predicted curve. Sampling e�ort was recorded

as the number of sampling stations and this variable was centered using the average

number of sampling stations per visit (x̄ = 8.67). Working from the standardized

variable, we can determine the minimum and maximum values to plot.

> ##extract centered values of sampling effort

> effort <- bfrogData@obsCovs$Effort

> ##create a series of 30 values to plot

> Effort.cent <- seq(from = min(effort), to = max(effort),

length.out = 30)

> ##back-transform values to original scale of variable

> Effort.mean <- 8.67 #mean of original variable see ?bullfrog

> Effort.orig <- Effort.cent + Effort.mean

We can then assemble the variables in a data frame and make model-averaged

predictions:

> ##note that all variables on the parameter must appear here

> pred.dataEffort <- data.frame(Effort.orig = Effort.orig,

Effort = Effort.cent, #centered variable

Type = 1)

> #Recall that \texttt{Type} was coded 1 (minnow trap) or 0 (call survey)

>

> ##compute model-averaged predictions with modavgPred on probability scale

15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survey type

D
et

ec
tio

n
pr

ob
ab

ili
ty

call survey minnow trapping

Figure 3: Detection probability of bullfrogs (Lithobates catesbeianus) in wetlands during call
surveys and minnow trapping surveys.

> out.predsEffort <- modavgPred(cand.set = bfrogMods,

newdata = pred.dataEffort, parm.type = "detect",

type = "response", c.hat = 1.08)

Next, we add the predictions and con�dence limits to the data frame containing the

variables used for predictions:

> ##add predictions to data set to keep everything in the same place

> pred.dataEffort$fit <- out.predsEffort$mod.avg.pred

> pred.dataEffort$se.fit <- out.predsEffort$uncond.se

> pred.dataEffort$low95 <- out.predsEffort$lower.CL

> pred.dataEffort$upp95 <- out.predsEffort$upper.CL

We can now plot the predictions:

> ##create plot

>

> ##plot

16

> plot(fit ~ Effort.orig,

ylab = "Detection probability",

xlab = "Sampling effort",

ylim = c(0, 1),

type = "l",

cex = 1.2, cex.lab = 1.2, cex.axis = 1.2,

data = pred.dataEffort)

> ##add 95% CI around predictions

> lines(low95 ~ Effort.orig, data = pred.dataEffort,

lty = "dashed")

> lines(upp95 ~ Effort.orig, data = pred.dataEffort,

lty = "dashed")

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling effort

D
et

ec
tio

n
pr

ob
ab

ili
ty

Figure 4: Detection probability of bullfrogs (Lithobates catesbeianus) in wetlands during call
surveys and minnow trapping surveys.

Figure 4 does not suggest large changes in detection probability within the range of

values of sampling e�ort observed during the study.

17

3 Additional methods to export output

For users familiar with Markdown or LATEX, the AICcmodavg package o�ers a number

of utility functions to convert output to LATEX tables. For example, we can convert the

model selection table:

> library(xtable)

> xtable(outTabC)

% latex table generated in R 4.4.1 by xtable 1.8-4 package

% Sat Oct 12 03:56:17 2024

\begin{table}[ht]

\centering

\begin{tabular}{lrrrrrr}

\hline

& Model & K & QAICc & Delta QAICc & QAICc weight & log-Likelihood \\

\hline

4 & psiReed.pTypeEffort & 6 & 202.71 & 0.00 & 0.55 & -94.38 \\

2 & psidot.pTypeEffort & 5 & 203.33 & 0.62 & 0.41 & -95.98 \\

3 & psiReed.pdot & 4 & 208.85 & 6.14 & 0.03 & -99.98 \\

1 & null & 3 & 209.88 & 7.17 & 0.02 & -101.68 \\

\hline

\end{tabular}

\end{table}

We can also format the results of multimodel inference to a LATEX table:

> xtable(estReed)

% latex table generated in R 4.4.1 by xtable 1.8-4 package

% Sat Oct 12 03:56:17 2024

\begin{table}[ht]

\centering

\begin{tabular}{lrrrr}

\hline

& Model-averaged beta estimate & Unconditional SE & 95\% lower limit & 95\% upper limit \\

\hline

psi(Reed.presence) & -1.19 & 1.75 & -4.63 & 2.24 \\

\hline

\end{tabular}

\end{table}

Other possibilities include the detection history summary:

> xtable(detHist(m3))

% latex table generated in R 4.4.1 by xtable 1.8-4 package

% Sat Oct 12 03:56:17 2024

\begin{table}[ht]

\centering

\begin{tabular}{lrr}

\hline

& sampled & detected \\

\hline

Season-1 & 50 & 23 \\

\hline

\end{tabular}

\end{table}

18

We can also obtain the LATEXversion of the chi-square table when checking model

�t:

> xtable(mb.chisq(m3))

% latex table generated in R 4.4.1 by xtable 1.8-4 package

% Sat Oct 12 03:56:17 2024

\begin{table}[ht]

\centering

\begin{tabular}{lrrrrr}

\hline

& Detection history & Cohort & Observed & Expected & Chi-square \\

\hline

0000000 & 0000000 & 0 & 25.00 & 24.10 & 0.03 \\

0000001 & 0000001 & 0 & 2.00 & 1.92 & 0.00 \\

0000100 & 0000100 & 0 & 2.00 & 1.92 & 0.00 \\

0000110 & 0000110 & 0 & 1.00 & 0.31 & 1.57 \\

0001000 & 0001000 & 0 & 6.00 & 1.92 & 8.66 \\

0001111 & 0001111 & 0 & 1.00 & 0.01 & 125.80 \\

0100000 & 0100000 & 0 & 2.00 & 1.92 & 0.00 \\

1000000 & 1000000 & 0 & 3.00 & 1.92 & 0.61 \\

1000100 & 1000100 & 0 & 1.00 & 0.31 & 1.57 \\

1001001 & 1001001 & 0 & 1.00 & 0.05 & 18.46 \\

1010000 & 1010000 & 0 & 1.00 & 0.31 & 1.57 \\

1011001 & 1011001 & 0 & 1.00 & 0.01 & 125.80 \\

0..1000 & 0..1000 & 1 & 1.00 & 0.04 & 23.83 \\

0..0..0 & 0..0..0 & 2 & 1.00 & 0.82 & 0.04 \\

.000000 & .000000 & 3 & 1.00 & 1.40 & 0.11 \\

.000001 & .000001 & 3 & 1.00 & 0.07 & 13.02 \\

\hline

\end{tabular}

\end{table}

Table 1 presents the di�erent xtable methods useful with objects created with the

AICcmodavg package. A number of options are available to suppress certain columns in

the table, in addition to including captions or table labels:

> #add caption, suppress log-likelihood, and include cumulative Akaike weight

> print(xtable(outTabC,

caption = "Model selection accounting for overdispersion in the bullfrog data.",

include.LL = FALSE, include.Cum.Wt = TRUE),

caption.placement = "top", include.rownames = FALSE)

% latex table generated in R 4.4.1 by xtable 1.8-4 package

% Sat Oct 12 03:56:17 2024

\begin{table}[ht]

\centering

\caption{Model selection accounting for overdispersion in the bullfrog data.}

\begin{tabular}{rrrrrr}

\hline

Model & K & QAICc & Delta QAICc & QAICc weight & Cumulative weight \\

\hline

psiReed.pTypeEffort & 6 & 202.71 & 0.00 & 0.55 & 1.08 \\

psidot.pTypeEffort & 5 & 203.33 & 0.62 & 0.41 & 1.08 \\

psiReed.pdot & 4 & 208.85 & 6.14 & 0.03 & 1.08 \\

null & 3 & 209.88 & 7.17 & 0.02 & 1.08 \\

19

\hline

\end{tabular}

\end{table}

Table 1: Methods of the xtable package extended for objects created with the AICcmodavg
package.
AICcmodavg function
producing result

Additional arguments supplied to xtable

aictab nice.names = TRUE, include.AICc = TRUE,
include.LL = TRUE, include.Cum.Wt = FALSE

bictab nice.names = TRUE, include.BIC = TRUE,
include.LL = TRUE, include.Cum.Wt = FALSE

boot.wt nice.names = TRUE, include.AICc = TRUE,
include.AICcWt = FALSE

dictab nice.names = TRUE, include.DIC = TRUE,
include.Cum.Wt = FALSE

ictab nice.names = TRUE, include.IC = TRUE,
include.LL = TRUE, include.Cum.Wt = FALSE

countDist nice.names = TRUE, table.countDist = "distance"

countHist nice.names = TRUE, table.countHist = "count"

detHist nice.names = TRUE, table.detHist = "freq"

detTime nice.names = TRUE, table.detTime = "freq"

anovaOD nice.names = TRUE, include.BIC = TRUE,
include.LL = TRUE, include.Cum.Wt = FALSE

summaryOD nice.names = TRUE

mb.chisq nice.names = TRUE, include.detection.histories = TRUE

checkParms nice.names = TRUE, include.variable = TRUE,
include.max.se = TRUE, include.n.high.se = TRUE

modavg nice.names = TRUE, print.table = FALSE

modavgCustom nice.names = TRUE, print.table = FALSE

modavgEffect nice.names = TRUE, print.table = FALSE

modavgIC nice.names = TRUE, print.table = FALSE

modavgShrink nice.names = TRUE, print.table = FALSE

modavgPred nice.names = TRUE

multComp nice.names = TRUE, print.table = FALSE

References

Akaike, H. 1973. Second International Symposium on Information Theory, chapter

Information theory as an extension of the maximum likelihood principle, pages 267�

281. Akadémiai Kiadó, Budapest, Hungary.

20

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and

L. Thomas. 2001. Introduction to distance sampling: estimating abundance of bio-

logical populations. Oxford University Press, New York, USA.

Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference:

a practical information-theoretic approach, second edition. Springer-Verlag, New

York, USA.

Fiske, I. and R. Chandler. 2011. unmarked: an R package for �tting hierarchical models

of wildlife occurrence and abundance. Journal of Statistical Software 43:1�23.

Hurvich, C. M. and C.-L. Tsai. 1989. Regression and time series model selection in

small samples. Biometrika 76:297�307.

Kéry, M. and J. A. Royle. 2016. Applied hierarchical modeling in ecology: analysis

of distribution, abundance and species richness in R and BUGS. Volume 1: Prelude

and static models. Academic Press, San Diego, California, USA.

Kéry, M. and J. A. Royle. 2021. Applied hierarchical modeling in ecology: analysis of

distribution, abundance and species richness in R and BUGS. Volume 2: Dynamic

and advanced models. Academic Press, San Diego, California, USA.

Lebreton, J.-D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling

survival and testing biological hypotheses using marked animals: a uni�ed approach

with case-studies. Ecological Monographs 62:67�118.

MacKenzie, D. I. and L. L. Bailey. 2004. Assessing the �t of site-occupancy models.

Journal of Agricultural, Biological, and Environmental Statistics 9:300�318.

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E.

Hines. 2006. Occupancy estimation and modeling: inferring patterns and dynamics

of species occurrence. Academic Press, New York, USA.

Mazerolle, M. J. 2015. Estimating detectability and biological parameters of interest

with the use of the R environment. Journal of Herpetology 49:541�559.

Mazerolle, M. J., L. L. Bailey, W. L. Kendall, J. A. Royle, S. J. Converse, and J. D.

Nichols. 2007. Making great leaps forward: accounting for detectability in herpeto-

logical �eld studies. Journal of Herpetology 41:672�689.

Royle, J. A. and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology:

the analysis of data from populations, metapopulations and communities. Academic

Press, New York, USA.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461�464.

Sugiura, N. 1978. Further analysis of the data by Akaike's information criterion and

the �nite corrections. Communications in Statistics: Theory and Methods A7:13�26.

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of

animal populations. Academic Press, New York, USA.

21

	Introduction
	Example using a site occupancy analysis
	Preparing the data and a few diagnostics
	Formulating and fitting the candidate models
	Inspecting the output and checking model fit
	Conducting model selection and multimodel inference
	Plotting results

	Additional methods to export output

